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We show that a scaling law exists for the near-resonant dynamics of cold kicked atoms in the presence of a
randomly fluctuating pulse amplitude. Analysis of a quasiclassical phase-space representation of the quantum
system with noise allows a new scaling law to be deduced. The scaling law and associated stability are
confirmed by comparison with quantum simulations and experimental data.
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Coherent quantum phenomena may now be routinely ob-
served in ultracold neutral atoms manipulated by light fields
detuned from atomic resonance. The unprecedented control
of atomic dynamics afforded by these atom-optical tech-
niques has impacted a number of fields significantly in the
last decade. In practical terms, the realization of cold-atom
fountain atomic clocks and atom interferometers is very im-
portant for precision measurements and metrology in general
�1�. Other promising applications include the manipulation
of atoms in optical lattices �2� with possible applications to
quantum computing �3�.

Aside from such practical applications, atom optics has
also offered the means to create ideal experimental imple-
mentations of model systems, in particular, the quantum
kicked rotor known in this realization as the atom optics
kicked rotor. The system and its variants have been studied
by a number of groups worldwide �4–8� due to the ease of
observing such quintessential quantum phenomena as dy-
namical localization �9� and dynamical quantum resonance
�10�. Recent interest in the quantum resonance phenomenon
comes not only from a fundamental perspective, but also
from the useful features of the resonance behavior. For ex-
ample, it has been shown that the resonance peaks exhibit
sub-Fourier resonance scaling �7,8�, opening the possibility
of faster than Fourier signal detection using the resonance
phenomenon �5�. Additionally, our work has great relevance
to similar proposals for precision measurements of the
atomic recoil frequency �11�.

The cloud hanging over all planned implementations of
quantum technologies, is that of decoherence �12�—
interaction with environmental degrees of freedom which
leads to irreversible loss of phase coherence in quantum sys-
tems. In atom-optics systems, decoherence typically arises
due to spontaneous emission and timing and amplitude fluc-
tuations in lasers. Typically, decoherence must be treated sta-
tistically, and its effect is only made plain by simulating
quantum master equations. However, in the case of the quan-
tum kicked rotor, some progress has been made in treating
the response to spontaneous emission decoherence through a
quasiclassical scaling theory �13�. In this case the dynamics
of kicked atoms near a fundamental quantum resonance, de-
pendent ostensibly on four parameters �kick number,
strength, period, and spontaneous emission rate� is reduced
to a stationary function of two scaled time variables, with a
closed analytical form. The presence of this scaling belies the

fact that moderate noise typically destroys quantum correla-
tions and it might be thought that the scaling function in the
presence of spontaneous emission is an isolated case where
decoherence is analytically tractable. However, here we
show that a scaling exists in the same system in the presence
of amplitude fluctuations. Most remarkably, the fundamen-
tally quantum decoherence process can be visualized with a
classical phase-space picture here. The noise changes the to-
pology of the phase space in a way that makes clear which
parameter regimes will exhibit robustness to decoherence.

It is important to note that amplitude noise induced de-
struction of quantum correlations has been proven for non-
quantum resonance conditions �14�. This naturally leads to
the assumption that away from exact quantum resonance,
amplitude fluctuations will rapidly induce quantum decoher-
ence. The contrary was proved by a recent experiment �15�,
but the cause of the stability near quantum resonance has
remained opaque. We derive in the following a thorough the-
oretical understanding of this robustness based on a semi-
classical scaling approach. Our theory compares very well
with measurements of near-resonant motion.

Experimentally, we realize a kicked atom system with
noise by overlapping an optical standing wave with a sample
of cold atoms and pulsing the potential periodically. The
height of the potential can be controlled by adjusting the
optical power transmitted through an acousto-optic modula-
tor. The system with amplitude noise may be represented by
the Hamiltonian �16�

H�t�� =
p2

2
+ k cos�z��

s=0

t−1

�1 + Rs���t�/� − s� , �1�

where p is the atomic momentum in units of 2�kL, z is the
atomic position scaled by 2kL, t� is time, and t is the total
number of kicks. Amplitude noise enters in the factors Rs,
which are random numbers distributed uniformly on the in-
terval �−L /2, +L /2�, where L is a noise level between 0 and
2. The scaled kicking period � is defined by the equation �
=8�rT, where �r=�kL

2 /2M is the recoil energy. The kicking
strength is proportional to the optical standing wave inten-
sity, and its measured value was k�4.3 or k�2.8 for the two
separate sets of experimental data considered here. The kick-
ing strength varied by about 10% across the atomic sample.
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In our experiments, a sample of cold Cs atoms was pre-
pared in a standard magneto-optical trap �MOT� �15�. The
atom ensemble had an initial width in momentum of up to
�p / �2�kL��8. They were released from the trap and ex-
posed to either 5 or 20 periodic pulses of width 480 ns from
an optical standing wave detuned by 0.5 GHz from atomic
resonance. For the 20 kicks experiments �with k�2.8� the
presence of spontaneous emission at a rate of 2.5% per kick
led to a slight lifting and broadening of the resonance peaks.
We corrected for the broadening by subtracting an additional
small, empirically determined constant from the off-resonant
energies in this case. Atoms were then allowed to evolve
freely for 12 ms before applying the MOT beams and imag-
ing the resultant fluorescence on a charge-coupled device
camera. In this way, the momentum distribution of the atoms
was calculated allowing a comparison with theoretical pre-
dictions. It has been shown that for pulse periods � equal to
integer multiples of 2� �so-called fundamental quantum
resonances� a semiclassical map may be used to describe the
quantum dynamics �13�. We define a detuning �=�−2��
which measures how far the pulse period is from the �th
fundamental quantum resonance, and define new scaled mo-
menta and position variables Js= ���ps+��+�� �where ps is
the atomic momentum in units of 2�kL at kick s and � is the
noninteger quasimomentum� and 	=z+��1−sgn���� /2
mod�2��. Then the pseudoclassical standard map with am-
plitude fluctuations is �see �13,15��

Js+1 = Js + �k�1 + Rs�sin�	s+1�, 	s+1 = 	s + Js. �2�

We now proceed to investigate how the mean energy at exact
quantum resonance is affected by amplitude noise. To do this
we need to find the average over all amplitude noise realiza-
tions �and later initial conditions 	0 ,J0� of the equation

Et�k1, . . . ,kt� =
1

2���2
�Jt − J0�2 →

�→01

2��
s=0

t−1

ks+1 sin�	0 + sJ0�	2

,

where we have used an expansion given in �13�.
The noise average is given by 
Et�k1 , . . . ,kt��Rj

=� j=1
t 1

L−L/2
L/2 dRjEt�k1 , . . . ,kt�. Since the series �ks=k�1+Rs��

is a series of independent random variables, this expression
simplifies greatly. Noting that 
Rj�=0 and 
RjRi�=0, j� i, we
need only retain the following terms of Et in the integrand:

��
s=0

t−1

sin�	0 + sJ0�	2

+ ��
s=0

t−1

Rs sin�	0 + sJ0�	2

. �3�

We note in addition that 
��s=0
t−1Rs sin�	0+sJ0��2�

= L2

12�s=0
t−1 sin2�	0+sJ0�, where we have used the fact that

�1 /Lt�−L/2
L/2 dR1¯dRs¯dRt Rs

2=L2 /12. Averaging over ini-
tial conditions �	0 ,J0� gives, with 	0� �0,2�� and J0
� ��� ,��+�� corresponding to a uniform quasimomentum
distribution in the unit interval �see �13��,



Et,L�� =
k2

4
t�1 +

L2

12
� , �4�

where we have used the fact that the averages over both
terms in Eq. �3� evaluate to t /2. �This result was also given
in Ref. �17� from a purely quantum argument.� Figure 1

shows experimental data compared with simulation results
and Eq. �4�, demonstrating good agreement between all
three. Shot-to-shot errors were found not to vary with � and
the given error bars are estimates calculated from the stan-
dard error over ten energy measurements at a kicking period
of 58 
s. The discrepancy between theory and experiment in
the L=0 case is due to the difficulty in measuring the high
momentum components, a problem which is ameliorated by
the addition of noise �6,15�.

We now show how the scaling law introduced in �13� can
be modified to take amplitude noise into account. We start
with the pseudoclassical scaling function �13�


Et,L,��

Et,0�

� R�t,k,�� � H�x� � 1 − �0�x� +
4

�x
G�x� , �5�

where x= t�k��� and 
Et,0�=k2t /4 is the mean peak energy.
The functions �0 and G are evaluated numerically, and the
reader is referred to Ref. �13� for details.

For L�0, we generally expect a loss of the scaling in all
the variables � ,k , t ,L due to higher correlations in the evo-
lution of the classical map �2�, neglected above when deriv-
ing Eq. �4�. Remarkably, however, by observing the type of
change in topology of the pseudoclassical phase space when
increasing �, as depicted in Fig. 2, we can nevertheless ac-
curately estimate the change of energy growth in the pres-
ence of noise for small � �for which the semiclassical ap-
proach is valid for long experimental time evolutions�. Noise
is well known to enhance diffusion along nonlinear reso-
nances in the first place �18�. Therefore, we expect the major
contribution of energy enhancement around the separatrix
region of pseudoclassical phase space, which separates the
two different topologies that give rise to the contributions G
and �0 to the scaling function �13�. Since G describes
bounded librating pendulum motion within the principal
resonance zone, local changes of that motion due to noise
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FIG. 1. �a� Experimental measurements of quantum resonance
peaks as a function of � for noise levels L=0 ���, L=0.5 ���, L
=1.0 ���, L=1.5 ���, and L=2.0 ���. �b� Points show experimen-
tally measured peak energies �circles�, whilst the dashed line shows
the theoretical formula Eq. �4�. Crosses show simulation energies,
which exactly agree with the theory. Sample error bars are plotted
from shot-to-shot measurements, not taking into account systematic
uncertainties in the absolute value of k.
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will be small. The largest perturbation comes from classical
trajectories moving close to the separatrix which is washed
out due to the fluctuations of k �see Fig. 2�. In this region,
trajectories can actually perform rotating motion now, where
at L=0 they would still be bounded to the resonance. The
increase of energy arising from those trajectories can be es-
timated by considering the area in phase space covered by
them, as shown for L=1.5 in Fig. 2. Since the width of the
principal resonance is given by Jres�4�k�, the relative
change in weight of rotating orbits is given by

1

2�


Jres
2 � − Jres

2

Jres
2 �

L

8�
. �6�

The noise-averaged standard deviation is 
Jres
2 ���1

+L /4�Jres
2 by a simple integration. With this result we can

now add the additional energy of rotating trajectories to the
scaling function from Eq. �4�, by adding a term L / �8����x�.
Dividing now the true energies by the result at exact quan-
tum resonance and L=0, we finally arrive at the new scaling
function for finite noise,



Et,���
1

4
k2t

� R�t,�,k,L� � H�x,L�

� 1 +
L2

12
− �1 − L/�8����0�x� +

4

�x
G�x� . �7�

Our derivation of Eq. �7� is thus analogous to the noise-free
case, taking into account, however, the main contribution of
heating due to noise. Higher-order correlations and heating
of the librating modes are neglected. We note that the prin-
ciple changes to the phase space which give rise to this scal-
ing are readily seen in Fig. 2. In essentials, the scaling func-
tion reduces a complicated quantum system which includes
decoherence to the dynamics of the pendulum.

Inspection of Eq. �7� reveals some interesting features as
seen in Fig. 3. Firstly, because �0 saturates to 1 and G�x� is
small for small values of x, the small x behavior is largely
unchanged in the scaling function. Essentially, the zero-noise
scaling function is merely displaced upwards for small t, k,

or �. Experimentally, this means that as long as x= t�k��4
�e.g., take t=20, k=0.1 and scan over � for any noise value�,
the resonance peak will not be broadened. This fact is im-
portant for proposed precision experiments such as �11�
where experimenters need to know how much tolerance the
resonance width has to naturally occurring laser power fluc-
tuations. Secondly, for large x the scaling function is signifi-
cantly changed with the offset being much greater, corre-
sponding to real broadening of the peak and reduction of
peak visibility.

A comparison of the theory with simulation results is
shown in Fig. 3. It may be seen that the scaling function
reproduces the broad shape of the quantum simulations over
a large spectrum of parameters. Each point in Fig. 3 is ob-
tained by averaging over 50 000 initial conditions, each of
which is subject to kick-to-kick amplitude fluctuations. Al-
though our statistics are good, there is still a non-negligible
scatter in the simulation data which decreased systematically
when augmenting the number of initial conditions averaged
to obtain the final energy. The experimental data from Fig.
1�a� and additional new data sets have been plotted in Fig. 4.
The experimentally measured energies are obtained as an
ensemble average over the total number of atoms and are
rescaled by subtracting the mean initial energy of the en-
semble �p

2 /4 and then dividing by the energy at the peak
maximum for L=0. The estimated error bars shown in Fig. 4
represent shot-to-shot fluctuations over different noise real-
izations calculated as for Fig. 1.

In summary, we have derived and tested a generalized
scaling function for the quantum resonance peaks in the pres-
ence of noise. The theory shows broad agreement with both
quantum simulations and experimental results. Most impor-
tantly it illuminates new facts about the response of quantum
resonance to noise—in particular, the stability of motion near
to quantum resonance is revealed to be due to the unexpected

FIG. 2. �Color online� Phase-space diagrams showing the effect
of amplitude noise on the pseudoclassical map �2�. Left panel: with-
out noise. Middle panel: noise level L=1.5. Right panel: pendulum
trajectories for various initial conditions. The separatrix is shown by
a thick, dashed line. The gray shaded area shows a region of
�
Jres

2 � for L=1.5 about the separatrix, demonstrating the trajec-
tories which lead to the correction in Eq. �7�.
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FIG. 3. �Color online� Theoretical scaling function for L=0
�thick solid line�, L=0.5 �dotted line�, L=1.0 �dashed line�, L=1.5
�dot-dashed line� and L=2.0 �thin line�. Simulation data is also
shown, rescaled by the factor 1

4k2t, for L=0.5 ���, L=1.0 ���, L
=1.5 ���, and L=2.0 ���. Open symbols are produced for fixed k
=2.8, varying �� �10−3 ,0.1�, t� �20,150�, while filled symbols
represent data for randomly chosen values of k� �1,10�, �
� �10−3 ,0.1�, t� �2,150�.
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persistence of scaling laws in the noisy system. Although the
effect of amplitude noise is to modify and even destroy quan-
tum correlations, the effect near to quantum resonance can be
understood precisely in terms of the noise-induced changes
to the epsilon-classical phase space. Hence, quantum deco-
herence may be understood by a quasiclassical analysis in
the system studied here. The robust nature of the scaling for
small x allows us to predict parameter families of t, �, and k
for which noise will have a minimal effect on the quantum
resonance, and surprisingly we find that for small enough x,
the quantum resonance peak shape is entirely unaffected by
noise �although a displacement in energy occurs�. The explo-
ration of quantum systems which exhibit resistance to noise
is of great importance for the future of quantum technolo-
gies. Analytical methods for determining the response of a
system to noise and perturbations, as done here and in a
different context in �19�, are valuable because they offer in-
sight on the stability of quantum motion which simulations
cannot readily provide.

The authors acknowledge support within the Excellence
Initiative by the DFG through the Heidelberg Graduate
School of Fundamental Physics �Grant No. GSC 129/1� and
thank Shmuel Fishman for stimulating discussions.

�1� Atom Interferometry, edited by P. R. Berman �Academic, New
York, 1997�; S. L. Rolston and W. D. Phillips, Nature �Lon-
don� 416, 219 �2002�.

�2� O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179
�2006�.

�3� G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch,
Phys. Rev. Lett. 82, 1060 �1999�; T. Calarco, U. Dorner, P.
Julienne, C. Williams, and P. Zoller, Phys. Rev. A 70, 012306
�2004�.

�4� F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram, and
M. G. Raizen, Phys. Rev. Lett. 75, 4598 �1995�; H. Ammann,
R. Gray, I. Shvarchuck, and N. Christensen, ibid. 80, 4111
�1998�; G. Duffy et al., Phys. Rev. E 70, 056206 �2004�; P. H.
Jones, M. Goonasekera, D. R. Meacher, T. Jonckheere, and T.
S. Monteiro, Phys. Rev. Lett. 98, 073002 �2007�; I. Dana, V.
Ramareddy, I. Talukdar, and G. S. Summy, ibid. 100, 024103
�2008�.

�5� P. Szriftgiser, J. Ringot, D. Delande, and J. C. Garreau, Phys.
Rev. Lett. 89, 224101 �2002�; H. Lignier, J. C. Garreau, P.
Szriftgiser, and D. Delande, Europhys. Lett. 69, 327 �2005�.

�6� M. B. d’Arcy, R. M. Godun, M. K. Oberthaler, D. Cassettari,
and G. S. Summy, Phys. Rev. Lett. 87, 074102 �2001�; Phys.
Rev. E 69, 027201 �2004�; C. Ryu et al., Phys. Rev. Lett. 96,
160403 �2006�; J. F. Kanem, S. Maneshi, M. Partlow, M.
Spanner, and A. M. Steinberg, ibid. 98, 083004 �2007�.

�7� S. Wimberger, M. Sadgrove, S. Parkins, and R. Leonhardt,
Phys. Rev. A 71, 053404 �2005�.

�8� M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt,
Phys. Rev. Lett. 94, 174103 �2005�.

�9� S. Fishman, in Quantum Chaos, School “E. Fermi” CXIX,
edited by G. Casati et al. �IOS, Amsterdam, 1993�.

�10� F. M. Izrailev, Phys. Rep. 196, 299 �1990�.
�11� A. Tonyushkin, S. Wu, and M. Prentiss, e-print

arXiv:0803.4153v1.
�12� See, e.g., the recent review by K. Hornberger, e-print

arXiv:quant-ph/0612118, and references therein.
�13� S. Wimberger, I. Guarneri, and S. Fishman, Nonlinearity 16,

1381 �2003�.
�14� V. Milner, D. A. Steck, W. H. Oskay, and M. G. Raizen, Phys.

Rev. E 61, 7223 �2000�; D. A. Steck, V. Milner, W. H. Oskay,
and M. G. Raizen, ibid. 62, 3461 �2000�.

�15� M. Sadgrove, A. Hilliard, T. Mullins, S. Parkins, and R. Leon-
hardt, Phys. Rev. E 70, 036217 �2004�.

�16� R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A 45,
R19 �1992�.

�17� S. Brouard and J. Plata, J. Phys. A 36, 3745 �2003�.
�18� A. L. Lichtenberg and M. A. Lieberman, Regular and Chaotic

Dynamics �Springer, Berlin, 1992�.
�19� J. Chabé et al., Phys. Rev. Lett. 97, 264101 �2006�.

1 10

0.1

1

H
(x

,L
)

1 10
x

(a) (b)

FIG. 4. Theoretical scaling function of Eq. �7� �as shown in
Fig. 3� is compared with rescaled experimental data �as, e.g., from
Fig. 1�. Shown are data across more than one order of magnitude
in the scaling variable x for �a� L=0 ���, L=1.0 ���, and L=2.0
��� and �b� L=0.5 ��� and L=1.5 ���. Theoretical curves are
shown with the same line styles as in Fig. 3. Note that for x�5 the
data comes from separate five kick experiments, and the error bars
are the same size as the plotted points. Sample error bars are cal-
culated as described in the caption of Fig. 1. Data for ����0.15
is excluded since the pseudoclassical theory breaks down in this
region.
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